周錫增特聘教授的個人資料 - Profile of Hsi-Tseng Chou

周錫增 Hsi-Tseng Chou

國立台灣大學電機工程學系 特聘教授
國立台灣大學電信工程學研究所 特聘教授

Distinguished Professor, Department of Electrical Engineering, National Taiwan University
Distinguished Professor, Graduate Institute of Communication Engineering, National Taiwan University

主要研究領域:

高增益天線技術、電磁理論、電磁波傳播、高頻數值電磁技術、無線通訊系統、雷達系統

Major Research Areas:

High-Gain/Smart Antenna Technologies, Advanced Electromagnetic Theories, Propagation of Electromagnetic Waves, High-Frequency EM Numerical Techniques、Radar System

研究領域摘要:

 周教授的研究領域主要為高增益/智慧型天線技術的發展,和實現高增益天線技術及智慧應用所需之各項電磁、射頻晶片、元件與通訊技術,包括天線本體多頻及寬頻元件、輔助射頻元件(如頻率選擇平面、相移器、切換開關等)、電磁數值技術、天線/波形功能最佳化的電磁演算法則、以及天線應用創新實現之電磁理論等,其核心目標在於以應用為中心軸向之高增益天線實現技術、與產業應用,並利用天線技術所建構出之通訊與雷達系統,目前研究核心主題在天線方面包括碟形天線、主動陣列天線、反射陣列天線及透射陣列天線等四個核心天線型態與系統,源於此類天線的多元化與前瞻性;在系統方面則發展Massive MIMO天線系統、Tracking Radar 系統及智慧型天線系統,本團隊是目前國內非常少數可以實現整合天線與射頻系統之團隊,因此本團隊目前研究的重點包括:
(1) 實現超大型陣列天線的電磁數值分析技術、天線設計演算法則、應用領域範疇的開發、以天線為網路終端的天線網路化/智慧化等前瞻技術。
(2) 高增益天線的應用電磁理論,包括時域及頻域之電磁理論,尤其希望發展建構於幾何繞射理論之基本機制下的電磁理論,以求天線區域化設計的繞射機制。
(3) 下世代行動通訊技術之基地站天線技術、衛星通訊天線技術所需之高增益天線技術,尤其希望發展智慧化的機制來符合動態應用的需求,本項天線技術及智慧化的發展方向逐步朝毫米波及次太赫茲(Sub-THz)的頻段邁進。
(4) 超大型天線的量測技術、訊號分解技術、多路徑干擾的分解/抑制技術,目標在克服有限量測空間的拘限,最終目標在於整合量測與數值技術來實現天線系統的估測能力與最佳化設計能力。

(5)5G/B5G/6G之(含毫米波與低軌衛星等)天線系統、Massive MIMO系統、智慧型天線之通訊系統,應用於下世代之行動通訊系統(包括Sub-6 GHz及毫米波);整合射頻IC模組之天線系統來實現整合毫米波及Sub-THz天線及IC之模組化封裝技術(Antenna in Package, AiP & Antenna-in-Module, AiM) 。波束掃瞄、切換等技術.

(6) Tracking 天線系統;毫米波雷達系統來應用於無人機與汽車等載具之智慧駕駛、通訊與目標偵測。


 

Research Summary:

 In the history of Prof. Chou’s research activities, significant efforts have been made to realize high-gain, intelligent antennas and the required technologies, including fundamental electromagnetic (EM) theories, antenna components, passive RF components, numerical electromagnetic techniques, and optimization algorithms. The objective considers the application potential as the core to developing antenna- and RF-system-related technologies and enabling industrial applications to build RF systems. Current efforts focus on reflector antennas, active phased array antennas, reflectarray antennas, and transmit array antennas with significant works to drive its potential and advanced applications. The primary activities in recent years focused on the following subjects:
(1) The required advanced techniques to realize the vast antennas include fast analysis/numerical EM techniques, antenna design/realization algorithms, scope extension of application scenarios, and the cloud-based optimization of antenna networking and intelligent operations.  
(2) The buildup of electromagnetic foundations for the high-gain antennas, which includes time- and frequency-domains EM theories. The goal is to build the foundation based on the Uniform Geometrical Theory of Diffraction (UTD) architecture to provide the diffraction mechanisms that allow one to design the antennas by considering the local diffraction phenomena.
(3) The technologies of high-gain antennas for the next generations of mobile communications, satellite communications, and unique applications. Significant efforts are being made to develop technologies for the intelligent operation of high-gain antennas to fulfill the needs of dynamic applications. The development trends utilize millimeter wave frequency bands and their technologies.
(4) The measurement, signal decomposition, and multipath suppression/decomposition techniques to characterize the extensive antenna systems. The objective is to overcome the limitations of measurement systems in a limited space. The final goal attempts to integrate the measurement system into the numerical software so that the overall characterization of antenna systems simulating the application scenarios can be performed to provide the reference in the design stages.

(5) Antenna system, Massive MIMO system, innovative antenna system for 5G/B5G/6G applications of next-generation mobile communications (at sub-6 GHz, millimeter wave frequencies, and Sub-THz). Modularization technology to integrate antenna and RF IC to form an antenna system in package (Antenna-in-Package, AiP, and Antenna-in-Module, AiM). Active antenna array systems are the final destination of the studies. 

(6) Tracking antenna system and radar system for the applications of LEO satellites, UAVs, and vehicles in communications and target detection.

Photo of Hsi-Tseng Chou