鄭振牟 Chen-Mou (Doug) Cheng

國立台灣大學電機工程學系 副教授
Associate Professor, Department of Electrical Engineering, National Taiwan University

主要研究領域:

密碼硬體暨嵌入式系統,電子系統層級設計

Major Research Areas:

Cryptographic hardware and embedded systems (CHES), Electronic system-level (ESL) design

研究領域摘要:

快速密碼學實驗室位於明達館631室,由鄭振牟教授主持,主要的研究領域為密碼硬體暨嵌入式系統,以及電子系統層級設計,研究方向涵蓋解決密碼學與破密學中幾個重要問題的演算法理論分析,以及它們在大規模平行電腦上的實作,這些問題包括在有限體上解多項式方程組(solving systems of polynomial equations over finite fields)、整數質因數分解(integer factorization)、橢圓曲線離散對數(elliptic-curve discrete logarithm)、以及格基約減(lattice basis reduction)。

大規模平行電腦包括像顯示晶片(GPU)和FPGA叢集這樣的系統,是高效能運算架構新的典範。在這樣的系統上進行演算法實作,目前均仰賴通用程式語言如CUDA、OpenCL,或是Verilog、VHDL等通用硬體描述語言。這些通用工具並不適合用以進行密碼與破密系統的開發工作,不但因為這類系統的複雜度非常高,而且整體安全性往往與系統最弱的一環相若,因而在開發時只要稍有差池,整個系統的安全性就可能瓦解。有鑒於此,我們也發展更適合應用於密碼與資訊安全方面的系統層級設計工具,包括新的程式語言與其編譯器;另一方面,我們也積極尋求利用密碼與破密演算法幫助電子設計自動化的可能,例如利用快速解方程組的演算法來達成最佳化資源配置與排程的工作。

除了上述的核心研究,本實驗室也從事與現實生活息息相關的資訊安全研究,包括電子支付系統與安全元件的設計與分析,RFID系統(如悠游卡)安全性分析,以及雲端計算安全等研究。

關於本實驗室更進一步的資訊,請洽Fast Crypto Lab臉書社團

Research Summary:

Led by Professor Chen-Mou Cheng, Fast Crypto Lab (FCL) is located in room 631 of the new MD building. FCL's main research area is cryptographic hardware and embedded systems (CHES), as well as electronic system-level (ESL) design. Currently, FCL's main research activities focus on the design and analysis of efficient algorithms to solve several important problems arising from cryptology, as well as the development and implementation of these algorithms on massively parallel computers. These problems include solving systems of polynomial equations over finite fields, integer factorization, elliptic-curve discrete logarithm, and lattice basis reduction.

Massively parallel computers like graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) are a new paradigm of high-performance computing. Currently, programming such systems relies on the use of general-purpose programming languages such as CUDA and OpenCL, or general-purpose hardware description languages such as Verilog and VHDL. These general-purpose programming tools are not suitable for developing cryptographic or cryptanalytic systems, not only because these systems are usually highly complicated, but also because the security of a system depends on that of the weakest link, and hence if there are any mistakes in the development process of any components, the security of the entire system could be at stake. Because of this, at FCL we are developing system-level design tools that are more suitable for developing cryptographic and information-security applications. These tools include new programming languages and optimizing compilers that make development easier and less error-prone. On the other hand, we also seek the possibility of applying some cryptographic and cryptanalytic algorithms to solve similar problems in electronic design automation (EDA), e.g., using fast system solvers to help optimize resource allocation and scheduling in a variety of electronic systems.

Besides the preceding fundamental research, we are also actively engaged in applied, more practical information-security research that plays a very important role in our daily life. This includes the design and implementation of secure components for electronic payment systems, security analysis of radio-frequency identification (RFID) systems (such as the EasyCard used in Taipei Metro Rapid Transit System), and cloud computing security.

For further information of Fast Crypto Lab, please visit us on Facebook.

Photo of Chen-Mou Cheng