李百祺特聘教授的個人資料 - Profile of Pai-Chi Li

李百祺 Pai-Chi Li

國立台灣大學電機工程學系 特聘教授
國立台灣大學研究發展處 研發長
國立台灣大學國際產學聯盟 主任
國立台灣大學生醫電子與資訊學研究所 特聘教授
國家衛生研究院醫工組 兼任研究員
Distinguished Professor, Department of Electrical Engineering, National Taiwan University
Vice President , Office of Research and Development, National Taiwan University
Director , Industry Liaison Office, National Taiwan University
Distinguished Professor, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University
Adjunct PI, National Health Research Institutes

主要研究領域:

生物醫學工程、訊號處理、超音波影像

Major Research Areas:

Biomedical Engineering, Signal Processing, Ultrasound Imaging

研究領域摘要:

本人之研究領域乃針對超音波影像在生物醫學上之應用,以深入瞭解超音波影像物理機制為核心,信號處理演算法則為工具,提昇臨床及研究價值為目標。目前之主要研究方向包括:

A. 超音波非線性影像:超音波非線性影像是基於有限振幅失真而造成的非線性特性來形成影像。本部分之研究為對此複雜之成像做一深入瞭解,並提出新的影像方式。相關研究並亦進入使用超音波對比劑之非線性影像領域中。目前亦在探討微粒子在分子影像及基因治療之應用。

B. 適用於基因研究及藥物開發之超音波高頻影像技術:小動物實驗模型常被使用於基因、發展生物學及藥物開發等領域中,為了提升相關研究之品質,具有良好解析度及靈敏度之非侵入式之影像系統,便具有極高之價值。高頻超音波影像系統在此領域之應用仍有許多問題待突破,包括解析度之提升及血流計算演算法之開發。

C. 彈性影像:彈性影像之研究目標為發展一以組織之彈性特性為主的新影像方式,其對於組織病變、血管硬化及復健醫學之臨床診斷都將有重要的影響。此領域之研究重點及成果為肌腱之應變影像、肝硬化之彈性變化測量及其與病理之相關性研究及以應變分佈為基礎之影像複合技術。

D. 數位成像技術:醫學超音波影像系統之技術演進和電子技術之快速進步有著密不可分的關係。我們也預期創新的電子技術有助於近一步提升超音波影像系統之效能。本部分之研究分為使用三角積分器之成像裝置控制方法及使用二維陣列之三維影像動態聚焦控制方法。

Research Summary:

My research interests focus on biomedical applications of ultrasonic imaging with emphasis on the underlying physics and signal processing algorithms. The ultimate goal is to improve the clinical and research value of biomedical ultrasound. The current research topics include:

  1. Nonlinear ultrasonic imaging: Ultrasonic nonlinear imaging is based on the finite amplitude distortion during acoustic propagation. The purpose of this research is to understand the imaging mechanism and to propose new imaging techniques. This research is also related to nonlinear imaging using contrast agents, and molecular imaging and gene therapy using sub-micron particles.

  2. High frequency imaging: Small animal models are often used in gene research, developmental biology and drug development. A non-invasive imaging system with adequate resolution and sensitivity is of particular importance. The use of high frequency ultrasound in this area still has several problems to overcome, including the improvement in resolution and the development of new blood flow estimation techniques.

  3. Elasticity imaging: The purpose of elasticity imaging is to develop a new imaging method that can evaluate tissue pathological status, assess mechanical properties of blood vessels and provide new diagnostic information in rehabilitation. The focus of this research is strain imaging of tendon, the change in elastic properties of liver cirrhosis and strain compounding.

  4. Digital beamformer design: The advance of medical ultrasonic imaging system technologies is closely linked to the advance in electronic technologies. It is also expected that the foreseeable new electronic technologies can continue to benefit performance of ultrasonic imaging. This research covers the application of DS-modulator in digital beamforming, and the dynamic focus control methods for 3D imaging using 2D arrays.

Photo of Pai-Chi Li