胡振國特聘教授的個人資料 - Profile of Jenn-Gwo Hwu

胡振國 Jenn-Gwo Hwu

國立臺灣大學電機工程學系 特聘教授
國立台灣大學電子工程學研究所教授
Distinguished Professor, Department of Electrical Engineering, National Taiwan University
Professor, Graduate Institute of Electronics Enginering, National Taiwan University

主要研究領域:

矽金氧半元件/超薄閘極氧化層製程技術/新型矽基元件/快速熱機台及製程/均勻度分析及應力控制/矽金氧半太陽電池及光感應器

Major Research Areas:

Si MOS Devices/Ultra-thin Gate Oxide Processes/Novel Si-based Devices/Rapid Thermal Processing-RTP /Uniformity Analysis and Stress Control/Si MOS Solar Cell and Photo Sensors

研究領域摘要:

主要研究方向為矽基材料上之金氧半(MOS)元件,尤其是有關超薄閘極絕緣層之研發。

利用純水中加上電場技術,將超薄SiO2 (< 2.5 nm)不均勻處予以自動補償,使電特性改善,漏流降低;利用超薄金屬鋁之液相氧化,經由電場及時間之準確控制,可使氧化膜形成高介電係數氧化鋁,同時在界面形成適當之SiO2層,達到低成本高品質之新型高介電係數閘極絕緣層開發;利用超薄氧化層MOS(p)元件於正偏壓下電流飽和之特性,製作溫度感測器,可整合於先進IC製程,監控電路溫度變化,靈敏度可達近2V/oC;利用超薄氧化層MOS(p)元件於正偏壓下電流飽和之特性,作為晶格表面受到應力施加情形之感測,得知晶圓之應力分布,及元件受應力之衰退機制;利用快速熱(RTP)及流場之控制,可得不同熱應力下之元件特性,提供有效之應力研究環境,並改善應力均勻度;在RTP中晶圓承接台及上方加上不同之材料,可得較佳之溫度分布;利用自製之重覆脈衝加熱(RSO)技術,可得較佳之超薄氧化層後厚度均勻度;利用H2SiF6溶液於電場下快速成長室溫氧化層,可得低成本MOS太陽電池,效率可達10 %;利用MOS元件之C-V深空乏特性,分析不均勻分布;利用邊緣高電場效應,製作高靈敏光偵測器;利用MOS之I-V微分特性,分析超薄氧化層厚度及不均勻分布;利用雙MIS穿隧二極體耦合特性製作類電晶體及記憶體。

    研究以實作為主,結合精準之I-V及C-V量測得知元件特性,經分析解釋得知原理並進行改善,進而研發新型元件,提供學術界及業界參考。

Research Summary:

The major research topics are on the Si Metal-Oxide- Semiconductor (MOS) devices, especially on the study of ultra-thin gate oxides.

     Using the compensation of anions through ultra-thin oxides via the field stress in D.I. water, the oxide will become more uniform and less leaky.  By suitably controlling anodization time and field, one can obtain cost effective high-k Al2O3 by the oxidation of thin Al film.  Using the saturation characteristic of I-V curve of MOS(p) devices, one can detect the temperature and stress distribution within the wafer.  By adding suitable susceptors and cover quartz on wafer, one can control the temperature and flow distribution in RTP, and therefore the uniformity of oxide thickness.  Using anodization in H2SiF6 solution, one can prepare room temperature MOS solar cells with efficiency close to 10 %.  Analysis of the lateral non-uniformity in MOS structure by examining the deep depletion behavior in C-V curves.  High sensitive photo sensors by using the enhanced fringing field effect of MOS structure at edge.  Determination of the thickness of ultra-thin oxide and examining the non-uniformity property in it by analyzing the derivative of the I-V curve of MOS structure. Transistor and memory devices by utilizing the coupling effect in concentric MIS tunneling diodes.

     Experiments are essential in the study of devices.  From measurements and analyses, devices’ characteristics are explained and novel devices are proposed.

 

 

Photo of Jenn-Gwo Hwu

代表性著作 Selected Publication

  1. Y.C.Liao and J.G.Hwu*, “Intrinsic I-V and C-V Characteristics of Ultra-thin Oxide MOS (p) and MOS (n) Structures under Deep Depletion,” International Journal of Nanotechnology, Jan. 2015
  2. P.H.Tseng and J.G.Hwu*, “Convex corner induced capacitance-voltage response from depletion to deep depletion in non-planar substrate metal-oxide-semiconductor capacitors with ultra thin oxide,” Thin Solid Films, Vol.556, PP.317-321, Apr. 2014
  3. P.H.Tseng and J.G.Hwu*, “Corner Induced Non-uniform Electric Field Effect on the Electrical Reliability of Metal-Oxide-Semiconductor Devices with Non-planar Substrates,” Solid-State Electronics, Vol.91, PP.100-105., Jan. 2014
  4. C.W.Lee and J.G.Hwu*, “Quantum-mechanical calculation of carrier distribution in MOS accumulation and strong inversion layers,” AIP Advances, Vol.2, No.10, PP.102123-1~102123-18., Oct. 2013
  5. H.W.Lu and J.G.Hwu*, “Roles of Interface and Oxide Trap Density on the Kinked Current Behavior of Al/SiO2/Si(p) Structures with Ultra-thin Oxides,” Applied Physics A, DOI: 10.1007/s00339-013-7873-2, Aug. 2013
  6. C.C.Lin and J.G.Hwu*, “Performance enhancement of metal-oxide-semiconductor tunneling temperature sensors with nanoscale oxides by employing ultrathin Al2O3 high-k dielectrics,” Nanoscale, Vol.5, No.17, PP. 8090-8097, Aug. 2013
  7. T.Y.Chen, C.S.Pang, and J.G.Hwu*, “Effect of Electrons Trapping/De-trapping at Si-SiO2 Interface on Two-state Current in MOS(p) Structure with Ultra-thin SiO2 by Anodization,” ECS Journal of Solid State Science and Technology, Vol. 2, No.9, Q159-164, Jul. 2013
  8. C.M.Hsu and J.G.Hwu*, “Improvement of electrical performance of HfO2/SiO2/4H-SiC structure with thin SiO2,” ECS Journal of Solid State Science and Technology, Vol. 2, No.8, N3072-N3078., Jul. 2013
  9. C.C.Lin and J.G.Hwu*,, “ Nitric acid compensated aluminum oxide dielectrics with improved negative bias reliability and positive bias temperature response,” Journal of Applied Physics, Vol.113, No.5, PP. 054103-1~054103-8, Feb. 2013
  10. T.Y.Chen, H.W.Lu, and J.G.Hwu*, “Effect of H2O on the Electrical Characteristics of Ultra-thin SiO2 Prepared with and without Vacuum Treatments after Anodization,” Microelectronic Engineering, Vol.104., PP.5-10, Jan. 2013
  11. C.M.Hsu and J.G.Hwu*, “Investigation of Carbon interstitials with varied SiO2 thickness in HfO2/SiO2/ 4H-SiC structure,” Applied Physics Letters, Vol.101, No.25., PP.253517-1~253517-4, Dec. 2012
  12. P.H.Tseng and J.G.Hwu*, “Non-planar Substrate Effect on the Interface Trap Capacitance of MOS Structures with Ultra Thin Oxides,” Journal of Applied Physics, Vol.112, No.9., PP. 094502-1~094502-7, Nov. 2012
  13. J.C.Chiang and J.G.Hwu*, “Two-State Trap-Assisted Tunneling Current Characteristics in Al2O3/SiO2/SiC Structures With Ultra-thin Dielectrics,” IEEE Transactions on Nanotechnology, Vol.11, No.5., PP.871-876, Sept. 2012
  14. C.C.Lin and J.G.Hwu*, “Investigation of Nonuniformity Phenomenon in Nanoscale SiO2 and High-k Gate Dielectrics,” Journal of Applied Physics, Vol.112, No.6., PP.064119-1~064119-5, Sept. 2012
  15. J.C.Chiang and J.G.Hwu*, “Detrapping Characteristics of Al2O3/SiO2/4H-SiC Stacked Structure with Two-state Trap-assisted Tunnelling Current Behavior,” Journal of Physics D:Applied Physics, Vol.45, P.345303(6pp), Aug. 2012
  16. T.Y.Chen and J.G.Hwu*, “Two States Phenomenon in the Current Behavior of Metal-Oxide-Semiconductor Capacitor Structure with Ultra-thin SiO2,” Applied Physics Letters, Vol.101, No.7., PP. 073506-1~073506-4, Aug. 2012
  17. C.Y.Yang and J.G.Hwu*, “Photo-Sensitivity Enhancement of HfO2-based MOS Photodiode with Specific Perimeter Dependency due to Edge Fringing Field Effect,” IEEE Sensors Journal, Vol.12, No.6., PP.2313-2319., Jun. 2012
  18. J.Y.Cheng and J.G.Hwu*, “Characterization of Edge Fringing Effect on the C-V Responses from Depletion to Deep Depletion of MOS(p) Capacitors with Ultrathin Oxide and High-κ Dielectric,” IEEE Transactions on Electron Devices, Vol.59, No.3., PP.565-572, Mar. 2012
  19. K.M.Chen and J.G.Hwu*, “Area dependent deep depletion behavior in the capacitance-voltage characteristics of metal-oxide-semiconductor structures with ultra-thin oxides,” Journal of Applied Physics, Vol.110, No.11., PP.114104-1~114104-4, Dec. 2011
  20. J.C.Chiang and J.G.Hwu*, “Investigation of the Two-State Current Conduction Mechanism in High-k/SiO2 Stacked Dielectric with High Bandgap 4H-SiC Substrate,” Journal of the Electrochemical Society, Vol. 158, No.12., PP.G237-G241, Dec. 2011
  21. C.C.Lin and J.G.Hwu*, “Comparison of The Reliability of Thin Al2O3 Gate Dielectrics Prepared by In-Situ Oxidation of Sputtered Aluminum in Oxygen Ambient with and without Followed Nitric Acid Compensation,” IEEE Transactions on Device and Materials Reliability, Vol.11, No.2., PP.227-235, Jun. 2011
  22. S.J.Chang and J.G.Hwu*, “Comprehensive Study on Negative Capacitance Effect Observed in MOS(n) Capacitors with Ultra-thin Gate Oxides,” IEEE Transactions on Electron Devices, Vol.58, No.3., PP.684-690, Mar. 2011
  23. C.Y.Wang and J.G.Hwu*, “Characterization of Stacked Hafnium Oxide (HfO2) / Silicon Dioxide (SiO2) Metal-Oxide-Semiconductor (MOS) Tunneling Temperature Sensors,” Journal of the Electrochemical Society, Vol.157, No.10., PP. J324-J328., Oct. 2010
  24. J.Y.Cheng, H.T.Lu, and J.G.Hwu*, “Metal-Oxide-Semiconductor Tunneling Photodiodes with Enhanced Deep Depletion at Edge by High-k Material,” Applied Physics Letters, Vol.96, No. 23., PP. 233506-1~233506-3., Jun. 2010
  25. J.Y.Cheng, C.T.Huang, and J.G.Hwu*, “Comprehensive study on the deep depletion capacitance-voltage behavior for metal-oxide-semiconductor capacitor with ultra-thin oxides,” Journal of Applied Physics, Vol.106, No.7, PP.074507-1~074507-7, Oct. 2009
  26. C.Y.Yang and J.G.Hwu*, “Low Temperature Tandem Aluminum Oxides Prepared by DAC-ANO Compensation in Nitric Acid,” Journal of the Electrochemical Society, Vol.156, No.11,, PP.G184-G189, Sept. 2009
  27. C.H.Chang and J.G.Hwu*, “Characteristics and Reliability of Hafnium Oxide Dielectric Stacks with Room Temperature Grown Interfacial Anodic Oxide,” IEEE Transactions on Device and Materials Reliability, Vol. 9, No.2, PP.215-221., Jun. 2009
  28. C.H.Chen, K.C.Chuang and J.G.Hwu*, “Characterization of Inversion Tunneling Current Saturation Behavior for MOS(p) Capacitors with Ultra-thin Oxides and High-k Dielectrics,” IEEE Transactions on Electron Devices, Vol.56, No.6,, PP.1262-1268, Jun. 2009
  29. C.Y.Wang and J.G.Hwu*, “Metal-Oxide-Semiconductor (MOS) Structure Solar Cell Prepared by Low Temperature (< 400oC) Anodization Technique,” Journal of the Electrochemical Society, Vol.156, No.3, PP. H181-H183., Jan. 2009
  30. K.C.Chuang and J.G.Hwu*, “Silicon Oxide Gate Dielectric on N-Type 4H-SiC Prepared by Low Thermal Budget Anodization Method,” Journal of the Electrochemical Society,, Vol.155, No.8, PP.G159-G162., Aug. 2008
  31. J.C.Tseng and J.G.Hwu*, “Lateral Non-uniformity Effects of Border Traps on The Characteristics of Metal-Oxide-Semiconductor Field-Effect Transistor Subjected to High-Field Stresses,” IEEE Transactions on Electron Devices, Vol.55, No.6, PP.1366-1372., Jun. 2008
  32. C.C.Wang, T.H.Li, K.C.Chuang and J.G.Hwu*, “Study of Ultra-thin Gate Oxides Prepared by Tensile-Stress Oxidation in Tilted Cathode Anodization System,” Journal of the Electrochemical Society, Vol.155, No.3, PP.G61-G64., Mar. 2008
  33. C.H.Chang and J.G.Hwu*, “Reliability of Low Temperature Processing Hafnium Oxide Gate Dielectrics Prepared by Cost-effective Nitric Acid Oxidation (NAO) Technique,” IEEE Transactions on Device and Materials Reliability, Vol. 7, No.4, PP.611-616., Dec. 2007
  34. H.P.Lin and J.G.Hwu*, “Analysis of Constitution and Characteristics of Lateral Nonuniformity Effects of MOS Devices Using QM-based Terman Method,” IEEE Transactions on Electron Devices, Vol. 54, No.11, PP. 3064-3070, Nov. 2007
  35. J.C.Tseng and J.G.Hwu*, “Oxide Trapped Charges Induced by Electrostatic Discharge (ESD) Impulse Stress,” IEEE Transactions on Electron Devices, Vol.54, No.7, PP.1666~1671, Jul. 2007
  36. Y.L.Yang, C.H.Chang, Y.H.Shih, K.Y.Hsieh, and J.G.Hwu*, “Modeling and Characterization of Hydrogen Induced Charge Loss in Nitride Trapping Memory,” IEEE Transactions on Electron Devices, Vol.54, No.6, PP.1360~1365, Jun. 2007
  37. J.C.Chiang and J.G.Hwu*, “Low Temperature (< 400 ℃) Al2O3 Ultrathin Gate Dielectrics Prepared by Shadow Evaporation of Aluminum Followed by Nitric Acid Oxidation,” Applied Physics Letters, Vol.90, No.10, PP.102902-1~102902-3, Mar. 2007
  38. J.C.Tseng and J.G.Hwu*, “Effects of Electrostatic Discharge (ESD) High-Field Current Impulse on Oxide Breakdown”,” Journal of Applied Physics, Vol.101, No.1, PP. 014103-1~014103-6, Jan. 2007
  39. K.C.Chuang and J.G.Hwu*, “Improvement in Electrical Characteristics of High-k Al2O3 Gate Dielectric by Field-Assisted Nitric Oxidation,” Applied Physics Letters, Vol.89, No.23, PP.232903-1~232903-3, Dec. 2006
  40. T.M.Wang, C.H.Chang, and J.G.Hwu*, “Enhancement of Temperature Sensitivity of Metal-Oxide-Semiconductor (MOS) Tunneling Temperature Sensors by Utilizing Hafnium Oxide (HfO2) Film Added on Silicon Dioxide (SiO2),” IEEE Sensors Journal, Vol. 6, No. 6, PP. 1468-1472, Dec. 2006
  41. S.W.Huang and J.G.Hwu*, “Lateral Nonuniformity of Effective Oxide Charges in MOS Capacitors with Al2O3 Gate Dielectrics,” IEEE Transactions on Electron Devices, Vol.53, No.7, PP.1608-1614, Jul. 2006
  42. C.W.Tung, Y.L.Yang and J.G.Hwu*, “Impact of Strain-Temperature Stress on Ultrathin Oxide,” IEEE Transactions on Electron Devices, Vol.53, No.7, PP.1736-1737, Jul. 2006
  43. T.M. Wang and J.G. Hwu*, “Temperature-Induced Voltage Drop Rearrangement and Its Effect on Oxide Breakdown in MOS Capacitor Structure,” Journal of Applied Physics, Vol.97, No.4, PP.044504-1~5, Apr. 2005
  44. Y.P.Lin and J.G.Hwu*, “Oxide Thickness Dependent Suboxide Width and Its Effect on Inversion Tunneling Current,” Journal of The Electrochemical Society, Vol.151, No.12, PP.G853-G857, Dec. 2004
  45. S.W.Huang and J.G.Hwu*, “Ultra-Thin Aluminum Oxide Gate Dielectric on N-Type 4H-SiC Prepared by Low Thermal Budget Nitric Acid Oxidation,” IEEE Transactions on Electron Devices, Vol.51, No.11, PP.1877-1882, Nov. 2004
  46. Y.L.Yang and J.G.Hwu*, “Quality Improvement of Ultra-Thin Gate Oxide by Using Thermal-Growth Followed by Scanning-Frequency Anodization (SF ANO) Technique,” IEEE Electron Device Letters, Vol.25, No.10, PP.687-689, Oct. 2004
  47. W.J.Liao, Y.L.Yang, S.C.Chuang, and J.G.Hwu*, “Growth-Then-Anodization Technique for Reliable Ultra-Thin Gate Oxides,” Journal of The Electrochemical Society, Vol.151, No.9, PP.G549-G553, Sept. 2004
  48. Y.H.Shih, S.R.Lin, T.M.Wang, and J.G.Hwu*, “High Sensitive and Wide Detecting Range MOS Tunneling Temperature Sensors for On-Chip Temperature Detection,” IEEE Transactions on Electron Devices, Vol.51, No.9, PP.1514-1521, Sept. 2004
  49. C.S.Kuo, J.F.Hsu, S.W.Huang, L.S.Lee, M.J.Tsai, and J.G.Hwu*, “High-k Al2O3 Gate Dielectrics Prepared by Oxidation of Aluminum Film in Nitric Acid Followed by High Temperature Annealing,” IEEE Transactions on Electron Devices, Vol.51, No.6, PP.854-858, Jun. 2004
  50. S.W.Huang and J.G.Hwu*, “Electrical Characterization and Process Control of Cost Effective High-k Aluminum Oxide Gate Dielectrics Prepared by Anodization Followed by Furnace Annealing,” IEEE Transactions on Electron Devices, Vol.50, No.7,, PP.1658-1664, Jul. 2003
  51. C.C.Hong and J.G.Hwu*, “Stress Distribution on (100) Si Wafer Mapped by Novel I-V Analysis of MOS Tunneling Diodes,” IEEE Electron Device Letters, Vol.24, No.6, PP.408-410, Jun. 2003